εѕρεс

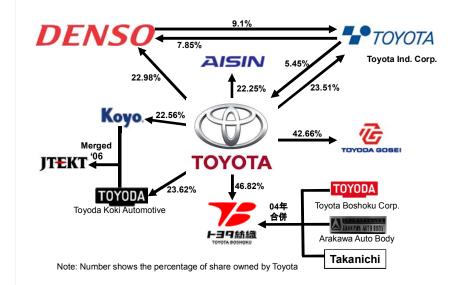
Automotive Electronics

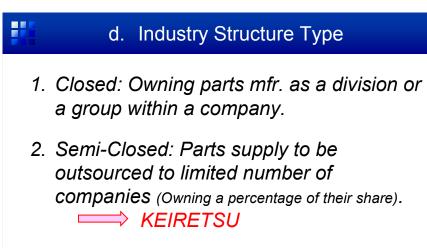
Contents

- I. Structure of the Industry
- II. Electronics: Today & Tomorrow
- III. Obstacles & Solutions
- IV. Related Standards
- V. Appendix

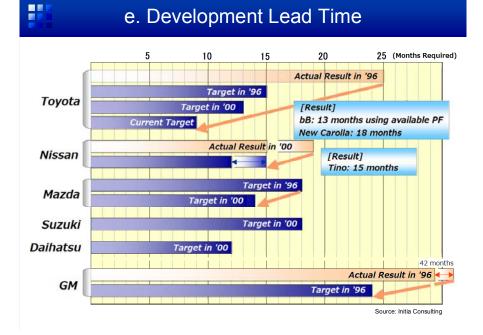
Contents

I. Structure of the Industry

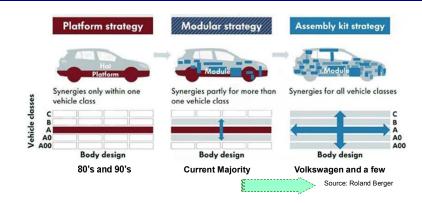

- II. Electronics: Today & Tomorrow
- III. Obstacles & Solutions
- M. Related Standards
- xibneqqA _V


a. Trend in Industry Structure

TOYOTA HONDA	Globalization	GM Fired
Examples	Cárra da ana	Examples
Global	Strategy	Multi-Domestic
Globally	Competition	Per country/region
Standardized product	Marketing	Localized product
Placed in a country/region per function in the VC	Positioning of Value Chain	The entire VC placed in a country/region
Stringent management by parent company	Organization Management	Localized authority
b. In	dustry Structur	⁻ e (1)
Car Mfr. (OEM)		



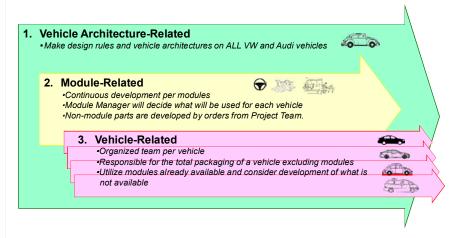
c. Industry Structure (Keiretsu)


3. Open: Having parts supply to be outsourced as an open bid as required.

f. Vehicle Development – The Difference

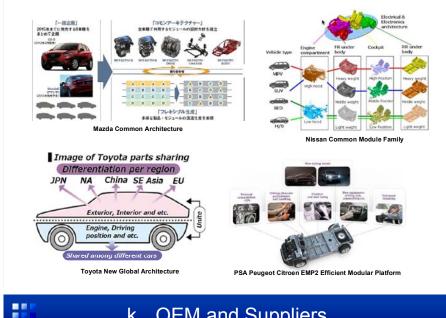
	Development Time		Development Time Cost			Quality
Region	Rating	Reason	Rating	Rating Reason		Reason
EU/ NA	Short	 By modularization Specifying modules in pre-development stage Less newly developed parts 	Low	•Scale merit by utilizing modules to multiple vehicles •Clear development time frame •RFQ to multiple suppliers	High	•Improvement per module or architecture •Efficiency in production
JPN	Short	Good understanding by parts suppliers Instant understanding of OEM's request Acucmulation of daily meetings	Low	•Cost reduction by working together •Becoming difficult to meet price requirements in global competition environment.	Very High	•Broad approach to safety, quality, and reliability •Approach done at every stage of suppliers •Possibilities of over quality
CHN	Short	Using conventional parts and modules Least amount of evaluation and testing Less demanding market	Very Low	Volume purchase of conventional parts Stringent request of cost reduction Self-production as an option	Low	 Many copies and counterfeit by reverse engineering Unbalanced vehicle dynamics Low interest in NVH

g. Vehicle Architecture

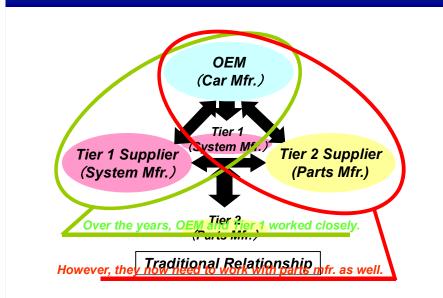


This is not matter of right or wrong, but manufacturers are always looking for better ways to make profit. The European manufacturers failed to pursuit the Japanese way of building cars. They found their style in modularization, pioneered by Volkswagen.

h. OEM and Suppliers (VW)



i. OEM and Suppliers (VW)



Unlike many of their Japanese rivals, the vehicle project manager is NOT in charge of that vehicle.

j. Modularization

k. OEM and Suppliers

I. OEM and Suppliers

Cooperation of Parts Mfr. And OEM

A must-have relationship to adapt the latest electronic technologies.

Adaptation possibilities and cultivation of "Newborn Tech" to car applications.

Key: Adaptation to Car Applications <Examples>

- 1. Automotive Microcomputer
- 2. ACC* Radar (Milliwave, Laser)

<Progress>

1. OEM +Parts Mfr. Fundamental Development

2. +System Mfr. [Product Development] *ACC: Automatic Cruise Control

Courtesy: Nissan Motors Corp.

m. Thailand Master Plan

n. Suppliers in Thailand

Top 100 Global Suppliers Active in Thailand

Japanese Global Suppliers		Other Global Suppliers		
2. Denso 4. Aisin Seiki 13.Yazaki 15.Sumitomo 16.Toyota Boshoku 18.CalsonicKansei 19.JTEKT 20.Hitachi 28.Toyoda Gosel 33.NTN 34.NSK 35.Mitsubishi 39.NHK Spring 40.Koito 41 TS Tech 43.Takata	46.Bridgestone 49.Tokai Rika 57.Showa 61.Mitsuba 66.Asahi Glass 72.Stanley 74. Akebono Brake 82.Sanden 84. F-Tech 92.Alpine 94.Pioneer 98. Omron 28/29 Companies	1. Robert Bosch 3. Continental 6. Faurecia 7. Johnson Control 8. ZF 11. TRW 12. Delphi 14. Lear 17. BASF 21. Valeo 22. Visteon 23. Autoliv 25. Mahle 27. Dana 31. BorgWarner 36.Teneco	 44. Federal-Mogul 47. Michelin 50. GKN Driveline 51. Hella 52. Goodyear 56. Grupo Antolin 58. Bayer 59. TI Automotive 65. DraexImaier 67. American Axle 73. Rleter Auto. 84. F-Tech 86. Hayes Lammerz 93. 3M 30/71 companies 	

Source: Thailand Automotive Institute

Contents

L. Structure of the Industry

II. Electronics: Today & Tomorrow

- III. Obstacles & Solutions
- IV. Related Standards
- XibneqqA N

a. Pursuit of Better Efficiency and Safety ENGINE GREEN : Low (Zero) emission Multiple powertrain (Hybrid) CVT, DCT and other transmission Advanced Emergency Brake System (AEBS) Safety: Lane Departure Warning System (LDWS) Pedestrian Airbag Alcohol Ignition Interlock eering Comfort: Cabin Air quality management Linear Motor Suspension Wellness: Health monitor of occupants pre-temponents will lightly tog the priver to give a physical warring and if still no addish to taker, the system will apply strong braining to reduce the regard of a contain. Courtesy: Nikkei BP(Hitachi), Dräger Safety AG & Co. KGaA, TEAC Corp.

b. Priority...Greener and Safer

Protection of pedestrians and occupants, and earth's environment is a MUST, regardless of geographical area. These are GLOBAL ISSUES!!

SE Asia Traffic Death Statistics			G	ilobal	Emissi	on Sta	andard	l Timel	line		
	Rate per	Absolute	Globa	al Regu	lation	Timelin	e by Re	gion .		CHS - Commercial W LVS - Light Vehicle	
Country	100,000 population	Deaths	U.S.	2007 US-07 CVS	2008 Locemetive	2009 GA CV5	2010 US-10 CVS	2011 US off-road	2012 Locomotive	2013 US Tier 3 LVS"	2014 US off-read
China	16.5	96,611			& Marine Tiers 0-2	Retroft**	Motorcycle Rule Tier 2	diesel Tier-4A*	Tier 3 CALIFY III	Locomotive &	diesel Tier-48*
Indonesia	16.2	16,548	EUROPE		EU Euro-5	EU Euro-S	Netherlands	EU off-road	EU CO2/GHG	EU-8 CVS**	EU off-read Stage 4
Vietnam	16.1	12,800			CVS	115*	Marine Of/Retrofit	Stage 38*	120g PM # UVS		EU Euro-6
Thailand	19.6	12,492	CHINA	Euro-3 LVS	Euro-3	Beijing CVS		Euro-4	fure-5 LVS*	1	Euro-5
Japan	5	6,639			Two-wheel Beijing Form-41.VS	Yellow Label		LVS/CVS		-	GVS**
Malaysia	23.6	6,282			Euro-4 LVS Cald-start	Japan-00		-	-	15	
Bangladesh	12.6	4,108	JAPAN		restrictions	LXS/CVS		LVS	aulatio	JP-13 CVS	
Afghanistan	39	1,779		-	UVS	US Tier 2 US"		cion R	6.9	JP-13 CVS	-
Cambodia	12.1	1,668	BRAZIL			Matarcycle Rule	EI	NCs reductions LVS	Euro-5 CVS		
Myanmar	23.4	1,638	RUSSIA		Euro-3 LVS	NW SI	ricle		-	-	Euro-5 CVS
Philippines	20	1,185	nossin		6419-3 LVS			CVS			Ears-5 GVS
Singapore	4.8	214	INDIA		1.00	-	Euro-4105*	Euro-4 CVS		-	
Bhutan	14.4	111					A motorcycle rule"	11 Cities			
	Courtesy: Wi	HO survey 2009						Courte	sy: AltE	nergyStoc	ks.com

In the past, it was common to see so-called "Trickle down effect" in car features. The latest and best technologies were only available to those sold in developed countries. But Not anymore! They have to provide as much hi-tech and new technologies to ALL of their customers.

Higher Voltage d.

1920s	1955 	2015?	20XX
7V (6V Battery)	14V (12V Battery)	42V (36V Battery)	Multiple-Voltage
Load: Accessories - Lamp - Ignition	 Load: Body electronics Lamp Engine management system Audio Navigation System 	Load: PWR electronics - HEV, ISG - X-by-wire - High fuel-efficiency - Low emission	HEV, FCEV 150 – 300V - Power: 42V - ECU: 7V
-	er voltage = lower amps (1/3 nectors, and smaller motors		

Be able to use high-wattage system (E-air compressor, motor generator, integrated starter generator, E-heated windshield, and etc.) .

Less use of converters = less power loss = better overall efficiency

Connected e.

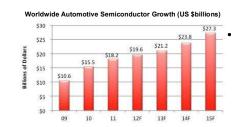
Expanding use of ethernet

TWIELD MR Property	His		Supply	Signal and Power applications
	Estimated E	thernet Adopt	ion Timeline	
340° Camera System	Powertrain CAN	FlexRay CAN FlexR	CAN FlorRa	OPEN
Seo Camera System	Body CAN	CAN	CAN	ALLIANCE
Dicle D	Infotainment CAN			ALLIANCE
	Vehicle Motion & Safety	FleaRey CAN FleaR	Ethernol CAL Floor	
	Camera Systems LVDS	LVD 5 Ethor	Ethermet	
	Diagnostics*	Ethernet CAL Ether	Ethernet	The second secon
ŝ	Backbone**		Ethernet	
	2010 * via Galeway ** with introduction of	~2015 domain control units	2020 Used with permission from	
				23071
TODA	AY: Non-critic	cal, Signal-(Only	
	applicatio		-	Source: NXP Semiconductors

f. Regulations or ...

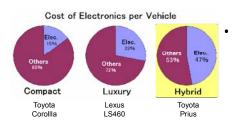
Assessment of technology and disclosure of test results by institutions may encourage manufacturers to implement and improve the technology earlier than their plan.

Source: Automotive Technology Magazine translated by author



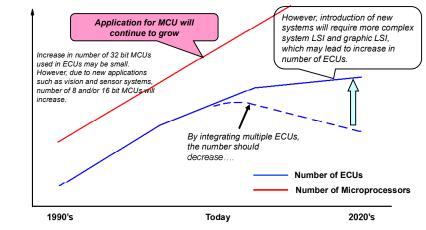
Shrink in size, Integration Ex: Used to be a separate unit, but now they are integrated as one.

Synchronization Ex: A group of parts work in-sync to execute a function, as a system.


Seatbelt

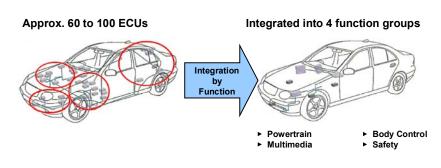
i. Increase of Electronics (1)

In semiconductor industry, sales to automotive industry was US\$11 billion in 2000. However, that number reached US\$18 billion in 2011, and by 2015, it is expected to reach US\$27 billion. (Annual growth of 11%)


Courtesy: IC Insight

Cost of Electronics in a Vehicle2005Avg. 20%2015>Avg. 40% (expected)

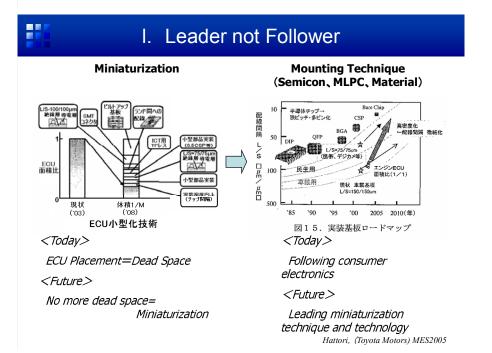
Courtesy: Nikkei BP


Increase of Electronics (2)

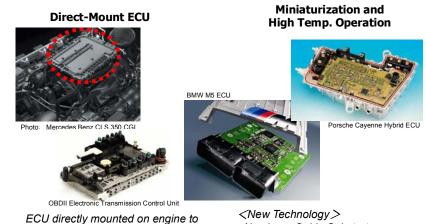
Number of ECUs stabilizes, while number of MCUs continue to grow.

Integration of multiple ECUs has begun. However, there are new systems that requires MCUs to control, are waiting to be adapted. As a whole, number of ECUs may stabilizes while the number of MCUs expected to continue to grow. Courtesy: Nikkei Automotive Technology

k. ECU Groupings

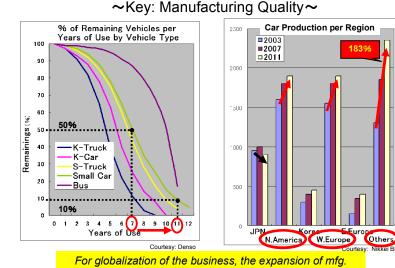


Integration of approx. 60 to 100 ECUs to 4F groups.

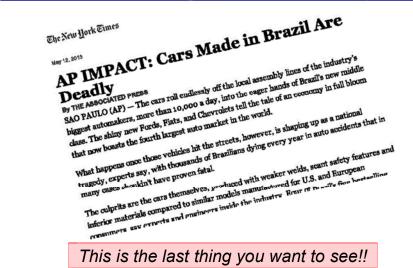

Toyota Motors has announced that they will integrate ECUs to 4 function groups. 4 function groups are:

1. Powertrain 2. Body Control 3. Multimedia 4. Safety

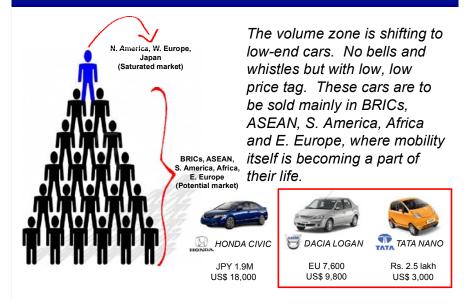
Courtesy: Toyota Motor Company



m. Change in Environment


ECU directly mounted on engine to cut the use of wire harness and production cost. Some vehicle even submerge ACU in transmission oil. <New Technology > •Aluminum Oxide Substrate •High-Temp. Application IC •Bare-chip mounting technique •Power semiconductor devices

n. Change in Expectations in a Car

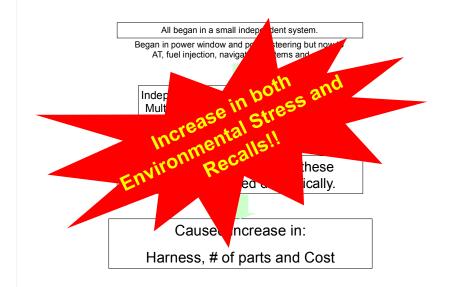


capability while maintaining the quality will be the key.

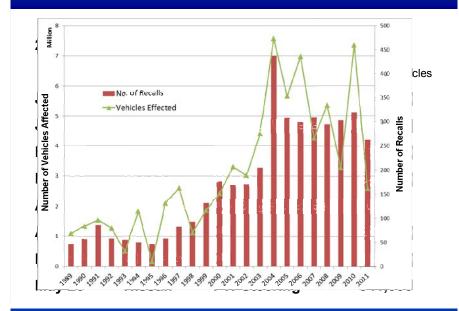
o. Something You Want to Avoid

p. The Challenge – Volume Zone

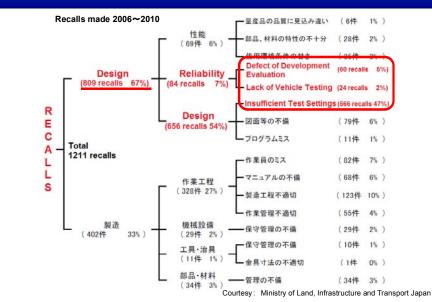
q. The Challenge – Stay in Business


Contents

- I. Structure of the Industry
- II. Electronics: Today & Tomorrow


III. Obstacles & Solutions

- IV. Related Standards
- xibneqqA _V


a. Problem Caused by Electronization

b. Recall Problems

c. Recall Analysis

d. Recall Counter Measures

1. If there is to be a recall

- 1. Retrace of trouble
 - 1. Cause-Analysis, Importance (Criticality) Measure
 - 2. Influence-Analysis
 - 3. Assessment of Counter Measures
- 2. Recall Announcement
 - 1. Redesign & Test (Design of repair need to be done to meet the original spec. and evaluation test)
 - 2. Procurement and/or Manufacturing of Parts Required
 - 3. Recovery, Service and Maintenance

2. Recall Prevention

- 1. Modularization of Platform
- 2. Standardization of Parts without increasing a risk
- 3. Standardization of Design

e. Recall Prevention and Cost Balance

Volume (Scale) Merit

Limit number of suppliers and getting as much volume discount as possible would result in lower market price among competitors. Reliable parts can be used in ALL vehicles.

Quality (Recall) Risk

One defect in a part can affect ALL vehicles produced. Recalls not only cost them physically, but also in brand's reputation. OEMS cannot be aware of all new technologies used in their vehicles.

f. Automotive Requirements

Autmotive Electronics eed to meet demand the industry's Afraid of **RECALLs**. Stringent quality hon product life-cycle. Quick BASIC management and reliability evaluations implementation of the latest technology expected. s the key. Reliability (3yrs Reliability (>10yrs.) Quality (No dispersion) Quality (Dispersion ccepted) Requirements Anti-Heat (-40°C~+150°C) Temp. Range (-39 C++85°C) Spec. (Relatively Low-Spec.) Spec. (High-Spec.) • Temp. Range: -40°C~+150(180)°C Temp. Pange: -35(55)°C~+85(125)°C Test Time: 1,000~3,000hrs. Test Spec. Test Time: 300~1,000hrs. Stress: Temp./RH/Cycle/Vib./ Stress: Temp./RH/Cycle Cond./Salt Spray Establishment of legitimate reliability evaluation procedures Shortening of development lead time Shortening of development lead time Cost reduction of testing Obstacles Cost reduction of testing Expanding business into Quality management of int'l automotive industry procurement

∼Entry of Electronics Mfrs.~

h. Obstacles in Car Development

- Development Trend : —Shortening of development lead time —Lowering prime cost while sustaining quality
- Obstacles:
 - -Application environment getting severe
 - -Reliability testing not being able to keep the
 - pace with development lead time
 - -Cost increase due to increase in both the number of testing and test samples

■What's ahead:

- *—Improvement of simulation technique (Implementation of CAE)*
- -Shortening of test time (Adaptation of accelerated test)
- -Establishment of legitimate reliability testing procedures

i. An Ideal and Reality

In QA, main goal is to decrease initial and random failures. However, if the products are used in extreme conditions, decrease in wear-out failure will be the key.

j. Zero Defect and Fault Tolerance

Contents

- I. Structure of the Industry
- II. Electronics: Today & Tomorrow
- III. Obstacles & Solutions

IV. Related Standards

XibneqqA ...V

a. Types of Standards

- International, Industrial Standards
 - ISO, IEC, JEDEC, AEC and etc.
 - Open to public and available for purchase.
- Corporate Standards supplier certification
 - Non-Keiretsu
 - New suppliers are welcome.
 - Standards are available for purchase. (mostly online)
 - Keiretsu (mostly Japanese OEMs)
 - Basically disclosed.
 - Test background and how-to are only supplied certified vendors.

International Standards

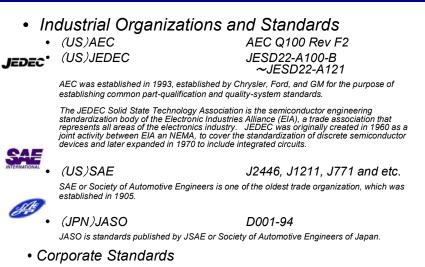
•ISO16750-2003

Road vehicles -- Environmental conditions and testing for electrical and electronic equipment

•ISO10487-1995

Passenger Car Radio Connections

• Domestic (National) Standard


•JIS Japanese Industrial Standard

•D1601	Vibration Testing Methods for Automobile Parts
•C0024~28	Environmental Testing (Electric/Electronics)
•D0205	Test Method of Weatherability for Automotive Parts

•DIN Deutsches Institut für Normung (Germany)

•DIN 10599 Car radios - Coaxial aerial connectors

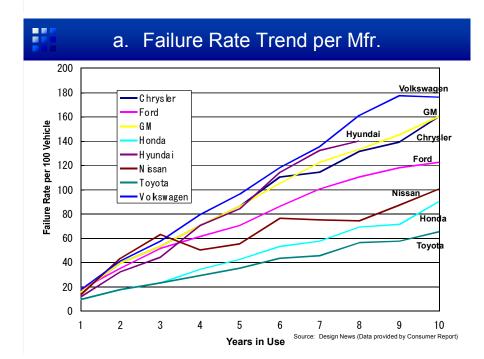
c. Electronics-Related (2)

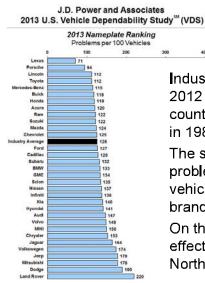
•GM-CM, BMW GS, VW, Delphi, Navistar and etc.

d. AEC Standards

- Primary members of the AEC are Tier 1 and Tier 2 manufacturers. The standards are valid mainly among American and European manufacturers.
 - AEC-Q100-REV F2
 - Target : Integrated Circuits (IC)
 - AEC-Q200-REV C
 - Target: Passive Components
 - Testing Procedures :
 - MIL-STD-202 Method 103, 106, 107, 108, 204, 210, 213 etc.
 - JESD22 Method JA-104, JESD47 Method JA-105 etc.

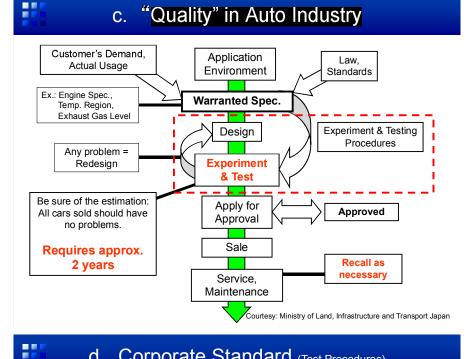
e. Where Can We Find Them?


- ISO <u>http://www.iso.org/iso/home/store/catalogue_ics.htm</u>
- IEC <u>http://webstore.iec.ch/?ref=menu</u>
- MIL <u>http://www.landandmaritime.dla.mil/</u>
- JIS <u>http://www.jisc.go.jp/app/JPS/JPSO0020.html</u> (Japanese only)
- DIN <u>http://www.beuth.de/cmd?level=tpl-home&languageid=en</u>
- JEDEC <u>http://www.jedec.org/standards-documents</u>
- SAE <u>http://standards.sae.org/automotive/</u>
- AEC <u>http://www.aecouncil.com/AECDocuments.html</u>
- Corporate Standards
 - IHS <u>http://www.ihs.com/products/design/industry-standards/organizations/</u>
 - FREESTD <u>http://www.freestd.us/</u>


Contents

- I. Structure of the Industry
- II. Electronics: Today & Tomorrow
- III. Obstacles & Solutions
- IV. Related Standards

V. Appendix


b. Failure Rate Trend per Mfr.

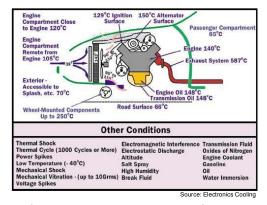
Industry average improved 5% from 2012 study and is the lowest problem count since the inception of the study in 1989.

The study finds that the fewer problems owners experience with their vehicle, the greater their loyalty to the brand.

On the regard, VW is yet to see the effect of modularization, at least in the North American market.

Corporate Standard (Test Procedures) d.

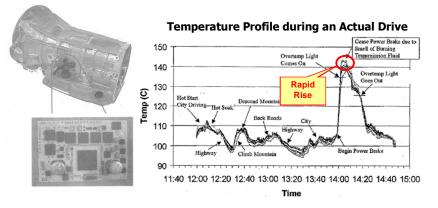
General Motors & Delphi Delco

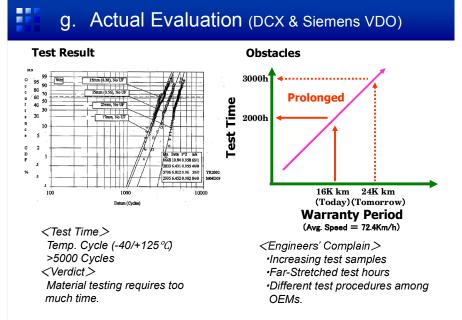

	Driver interior	-40°C to +85°C
	Underhood	-40°C to +125°C
Temperature	On-engine	-40°C to +150°C
5	In the exhaust and combustion areas	-40°C to +200-600°C
Mechanical Shock	During assembly (drop test)	3000g
	On the vehicle	50-500g
Mechanical Vibration		15g, 100Hz to 2kHz
Electromagnetic Impulses	21	100 to 200V/m
Exposure to	Common	Humidity, salt spray
-	In some applications	Fuel, oil, brake fluid, transmission fluid, ethylene glycol, exhaust gases

Toyota Motors

ECU Location	Detail Position	Required Operation Temperature
Passenger Room	Under dash board	-30 to +85°C
	ECU Box	-30 to +105°C
Engine Room	Underhood	-30 to +125(150)°C
	Connected to Engine	-30 to >+175°C

R. Wayne, IEEE Transaction on Electronics packaging manufacturing, Vo.27, No.3, 2004


e. Actual Environment


Each manufacturers gather their own data from their own cars. With ambient temperature considered, the temperature that electronic parts may get exposed to, can range from -40 to as high as +600 degrees. (Exhaust gas for sports cars may reach as high as +1,000 degrees!)

f. Actual Evaluation (DCX & Siemens VDO)

Sample: Transmission Control Unit

R. Wayne Johnson ,The Changing Automotive Environmental, IEEE CPMT Society, Vol.3 No.3, 2004

R. Wayne Johnson ,The Changing Automotive Environmental, IEEE CPMT Society, Vol.3 No.3, 2004

h. Actual Evaluation (Panasonic)

Test	Condition	Evaluation Time	Last Check Time	
Thermal Shock	-40°C(10min) to +150°C(10 min)	2000 cyc.	5000 cyc.	
Vibration	10G (5Hz - 2kHz)	V/Z (4h angle)	$\chi\chi\chi$ (0.4h each)	
Vibration	30G (50Hz - 2kHz)	XYZ (4h each)	XYZ (24h each)	
Heat Resistance	150°C	0.0000	4000h	
High Temp. Life	150°C, DCA	2-3000h	4000h	
Humidity Resistance	85°C, 85% RH	0.0000	40001-	
Humidity Life	85°C, 85% RH, DCA	2-3000h	4000h	
Cold Resistance	-40°C	2-3000h	4000h	
PCT	121°C, 100% RH	192h	-	
PCBT	121°C, 100% RH, DCA	192h	-	
		<u> </u>	nonania Industrial Company	

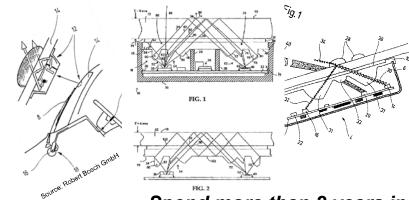
Power Choke Coils for Automobile ECUs

Typical data, specifications are subject to change without notice PCT: Pressure Cooker Test

PCBT: Pressure Cooker Biased Test

Courtesy: Panasonic Industrial Company

i. AEC Members



j. Development of Automatic Wiper (1)

They were asked to make an Automatic Windshield Wiper System for a luxury car segment.

j. Development of Automatic Wiper (2)

Spend more than 2 years in research and development of fundamental technologies

j. Development of Automatic Wiper (2)

They have done all related international and industrial standards and passed...

However, is that enough?

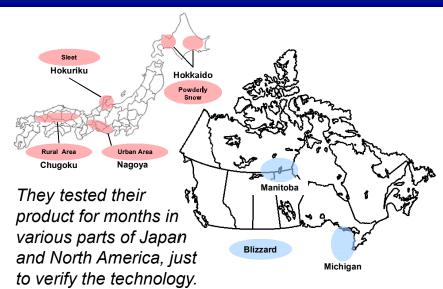
NO!!

All the tests done in a lab are simulations. How do you know for sure that this system would work in real world?? What should you consider in addition to the standards?


j. Development of Automatic Wiper (3)

In real world, there are many variations of rain!!

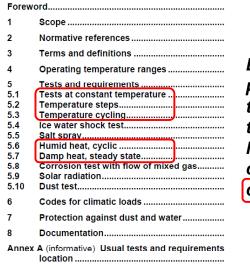
RAIN TYPES AND DROPLET SIZES 0 Diameter 5.0mm 2.0mm 0.5mm 0.02mm Thunder-Normal Fog Drizzle storm Rain Terminal 36km/hr 25km/hr 7.2km/hr 43m/hr Velocity (2m/sec) (1.2cm/sec) (10m/sec)(7m/sec)


The wiper should work in ALL types of rain.

But the rain is not the only thing to obscure your visibility!!

All of these need to be taken into consideration.

j. Development of Automatic Wiper (5)



j. Development of Automatic Wiper (6)

Paddle shifters with downshift row matching (PMD Only)			STD		
Rain-sensing intermittent windshield wipers with mist cycle	STD	STD	STD	STD	
Rear-window delogger with auto-off timer	STD	STD	STD	STD	
F SPORT-tuned, lowered Adaptive Variable Air Suspension, stabilizer bars and shock absorbers, adds Comfort and Sport S+ Drive Modes	•	•	\$TD	STD	- A
TORSEN® torque-sensing limited-slip rear clifferential [*] (RWD Only)			STD	-	AYI
Traction Control (TRAC)	STD	STD	STD	STD	
Vəhiclə Dynamics Integrated Management (VDIM) [*] .EARN MORE ≖	STD	STD	STD	ŚTD	AC.
19-in 15-spoke chrome-finished alloy wheels [*]	OPT	OPT		-	
9-inch 15-spoke alloy wheels with all-season tires [*]	OPT	OPT	-	-	
9-inch 15-spoke alloy wheels with summer tires [*]	OPT	OPT	-	-	
19-inch split-10-spoke forged alloywheels by BBS with summer (RWD) or all-season AWD) tires (*)	-	-	STD	STD	
9-inch split-seven-spoke alloy wheels with high-gloss finish and all-season tires [*]	OPT	OPT	-	-	
9-inch split-seven-spoke alloy wheels with high-gloss finish and summer tires [*]	OPT	OPT	-	-	
ctive Pedestrian Detection System [*] with infrared and stereo-camera technology valiable in:	•	-	•	-	
dhanced Pre-Collision System Package					
/ariable Gear Ratio Steering (VGRS)	OPT	OPT STD	STD	STD	
Mindshield-wiper delaer EARN MORE 💌	OPT	210	OPT	510	
				1	

Their effort was paid off as a Japanese luxury brand adopted the product as a standard equipment on almost all of their cars.

k. What can ESPEC provide?

ESPEC can provide chambers to reproduce temperature and humidity conditions in the circled tests.

k. What can ESPEC provide? (2)

TEST PROCI	EDURES AND REQUIREMENTS
3.1. TESTS A	T A TEMPERATURE
6.1.1. CL01	: Operation after storage
6.1.2. CL02	: Temperatures when not operating
6.1.3. CL03	: Extreme operating temperatures at usual power supply voltages
6.1.4. CL04	Temperature levels
6.1.5. CL05	: Exceptional power supply voltage
6.1.6. CL06	: Self heating measurement
6.1.7. CL07	: Ageing by thermal shocks air/air
6.1.8. CL08	: Endurance to thermal cycles
6.1.9. CL09	: Endurance to activations
6.1.10. CL1	: Endurance at high temperature
6.1.11. CL1	: Determination of operating limits at a temperature
3.2. HUMIDIT	Y, SEALING AND CHEMICAL TESTS
6.2.1. CL12	Humidity and corrosion
6.2.2. CL13	: Protection provided by envelopes (IP)
6.2.3. CL14	: Vacuum immersion
6.2.4. CL15	: Ice water thermal shocks
6.2.5. CL16	: High pressure wash
6.2.6. CL17	: Operation in dusty environment
6.2.7. CL18	: Exposure to acid vapours
6.2.8. CL19	: Accidental liquid penetration into the equipment

2.2 ELECTRICAL CHARACTERISATION TESTS

I. What can ESPEC provide? (1)

TSA-201D-W

Thermal Shock			
Test Conditions	3 Zones Low: -65 ℃ (30min) ↔ Ambient (10 min) ↔ High:: +25℃90%rh (20min) Samples: Plastic mold IC 5kg		
Transfer Time	to hot from ambient: Less than 10 min to cold from ambient: Less than 10 min.		
	to cold normalitional Less than to min.		
Condensation			
Condensation Test Conditions			

Condensation Cycle 2		
Test Conditions	2 Zones Low: -30℃ (60min) ↔ High:: +25℃95%rh (60min) Samples: Empty	
Iranster Lime	to hot: Less than 5 min. to cold: Less than 5 min.	

I. What can ESPEC provide? (2)

SDT-200 Siloxane Tester

ModelSDT-200Concentration Range0(Purge), 1-25ppmConcentration Resolution1ppmGas CreationBubbling MethodSiloxaneCyclosiloxane D4Temperature RangeRT+15°C to +70°CTemp. Resolution+/-0.1°C (no load)Temp. Distribution+/-0.5°C (no load)Test SpaceW600 x H600 x D600 mm		
Range 0(Purge), 1-25ppm Concentration Resolution 1ppm Gas Creation Bubbling Method Siloxane Cyclosiloxane D4 Temperature Range RT+15°C to +70°C Temp. Resolution +/-0.1°C (no load) Temp. Distribution +/-0.5°C (no load) Test Space W600 x H600 x D600 mm	Model	SDT-200
Resolution1ppmGas CreationBubbling MethodSiloxaneCyclosiloxane D4Temperature RangeRT+15°C to +70°CTemp. Resolution+/-0.1°C (no load)Temp. Distribution+/-0.5°C (no load)Test SpaceW600 x H600 x D600 mm		0(Purge)、1-25ppm
Siloxane Cyclosiloxane D4 Temperature Range RT+15°C to +70°C Temp. Resolution +/-0.1°C (no load) Temp. Distribution +/-0.5°C (no load) Test Space W600 x H600 x D600 mm		1ppm
Temperature Range RT+15°C to +70°C Temp. Resolution +/-0.1°C (no load) Temp. Distribution +/-0.5°C (no load) Test Space W600 x H600 x D600 mm	Gas Creation	Bubbling Method
Range R1+15*C to +/0*C Temp. +/-0.1*C (no load) Temp. +/-0.5*C (no load) Distribution +/-0.5*C (no load) Test Space W600 x H600 x D600 mm	Siloxane	Cyclosiloxane D4
Resolution +/-0.1°C (no load) Temp. +/-0.5°C (no load) Distribution +/-0.5°C (no load) Test Space W600 x H600 x D600 mm		RT+15°C to +70°C
Distribution +/-0.5°C (no load) Test Space W600 x H600 x D600 mm		+/-0.1°C (no load)
Exterior		+/-0.5°C (no load)
Exterior	Test Space	W600 x H600 x D600 mm
Dimensions W1190 x H1880 x D1315 mm		W1190 x H1880 x D1315 mm

I. What can ESPEC provide? (3)

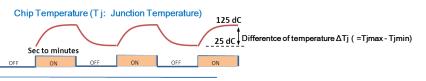
PVL/PVS/PVU/PVG

Combination system for Temperature, Humidity and Vibration testing.

Parameter	Range
Temperature	-70 ~ +100°C
Relative Humidity	20 ~ 98%
Force Peak	1176N ~ 29400N

I. What can ESPEC provide? (4)

Power cycle test system for IGBT device


Water cooled type

Air cooled type

I. What can ESPEC provide? (5)

High Temperature Reversed Bias Test system for IGBT device

Drain voltage:0 to 3,000 VSetting resolution: 1 VLeakage current monitor:10 μA to 3 mASetting resolution: 1 μA

I. What can ESPEC provide? (6)

Thank you for your attention

On our products:

SITHIPORN ASSOCIATES CO LTD

451-451/1 Sirinthorn Rd., Bangbumru, Bangplud, Bangkok 10700 Tel.+662 433 8331 Fax. +662 434 9510

We welcome your questions, suggestions, and/or comments on this presentation!!

ESPEC CORP. 3-5-6 Tenjinbashi, Kitaku, Osaka, 530-8550 JAPAN TEL: +81-6-6358-4785 FAX: +81-6358-4786 E-mail: k-suzuki@espec.co.jp